
c

An Autonomous Sensor-Based Path-Planner for Planetary
Microrovers

S. L. Laubach

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 91109

Abstract

With the success of Mars Pathfinder’s Sojourner
rover, a new era of planetary exploration has opened,
with demand for highly capable mobile robots. These
robots must be able to traverse long distances over
rough, unknown terrain autonomously, under severe
resource constraints. Based on the authors ’ firsthand
experience with the Mars Pathfinder mission, this pa-
per reviews issues which are critical for successful au-
tonomous navigation of planetary rovers. No currently
proposed methodology addresses all of these issues. W e
next report on the “Wedgebug” algorithm, which is ap-
plicable to planetary rover navigation in SE(2). The
Wedgebug algorithm is complete, correct, requires min-
imal memory for storage of i ts world model, and uses
only on-board sensors, which are guided b y the algo-
rithm to eficiently sense only the data needed for mo-
tion planning. The implementation of a version of
Wedgebug on the Rocky7 Mars Rover prototype at the
Jet Propulsion Laboratory (JPL) i s described, and ex-
perimental results from operation in simulated martian
terrain are presented.

1 Introduction

The recent Mars Pathfinder experience vividly ill-
lustrated the benefits of including a mobile robotic ex-
plorer on a planetary mission. Previous forays allowed
scientists to explore planets remotely, via an orbiter,
or were limited to a single site for study with a lander’s
instruments. However, the Sojourner rover, carried to
Mars by the Pathfinder spacecraft, was able to roam
and to place its instruments (a spectrometer and low-
mounted cameras) directly on or near objects of inter-
est. In all, the Sojourner rover ranged over an area
roughly 20 meters square, conducted soil experiments
in a variety of terrains, and sampled the spectra of 16

J. W. Burdick

Department of MechanicaI Engineering
California Institute of Technology

Pasadena, CA 91 125

distinct targets.[6] Missions currently being planned
call for new rovers to be sent t o Mars at launch oppor-
tunities in 2001, 2003, and 2005, as well as a nanorover
to be sent to the surface of an asteroid in 2003. Many
of these missions require the rovers to operate for up
to a year, compared with the 83 sols (martian days)
of operation for the Sojourner rover. The rovers are
also required to traverse greatly vaster distances: up
to 100 m/sol, as opposed to Sojourner’s 104 m/83 sols.
In addition, lessons learned from Mars Pathfinder in-
dicate a need for significantly increased rover auton-
omy in order to meet mission criteria, within severe
constraints including limited communication opportu-
nities with Earth, power, and computational capacity.

1.1 Motion Planning on Mars

A key advance in functionality required for plan-
etary rovers is greater navigational autonomy. Each
rover will be working in unknown, rough terrain. (The
resolution expected from Mars orbiters, for example, is
roughly 300 meters/pixel, with only isolated “postage
stamp’’ regions achieving the highest resolution of 1.4
m/pixel.[7] Orbiter camera pointing limitations pro-
hibit attempting to use these highest-resolution im-
ages for rover navigation or localisation.) Given a dis-
tant (i.e., not immediately visible by the rover’s sen-
sors) goal designated by Earth-based operators, the
rover must use its sensors to navigate safely and au-
tonomously to that goal. Rather than address all of
the issues which arise in this complex problem, this pa-
per will focus on the aspects relevant to autonomous
path planning.

Useful motion planners for planetary rovers have
several key characteristics: they must assume no prior
knowledge of the environment, must be sensor-based,
robust, complete and correct. They must also operate
under severe constraints of power, computational ca-
pacity, and the high cost of fight components, which

t,r;trlsl;ttrls into limited mcmory tlvdtlble on-board the
rovvr. Dur> to dead reckoning errors, slippage on
rough/looso sllbstrate, nonholonornic fine-positioning
c:onstr;tirlts, i111d constraints on mission time available,
using tovcr motion to augment sensing is costly. Si-
multaneously, limited memory, computational capac-
ity, power and time available all argue for minimis-
ing the amount of data sensed and processed. Thus,
a practical motion planner must utilise the available
sensing array in a scheme which efficiently senses only
the data needed for motion planning, requires minimal
memory to store salient features of the environment,
and conserves rover motion.

2 Relevant Work

Much of the body of work in motion planning can be
divided into three major categories: ‘‘classical” path
planners, heuristic planners, and “complete and cor-
rect” sensor-based motion planners. “Classical” plan-
ners assume complete knowledge of the environment,
and are complete. Heuristic planners, generally based
upon a set of “behaviours,” can be used in unknown
environments but do not guarantee the goal will ever
be reached, nor that the algorithm will halt. (A more
detailed discussion is presented in [5].) The third cat-
egory, which relies solely upon the rover’s sensors and
yet guarantees completeness, is most relevant to the
problem of autonomous planetary motion planning.

Two distinct approaches to such planners have been
explored, both of which adapt classical methods to a
local sensed region. One set of methods incrementally
builds “roadmaps” within the visible region, such as
Choset’s HGVG [2], Rimon’s adaptation of Canny’s
OPP [I], and the “Tangent Bug” algorithm of Kamon,
Rivlin, and Rimon[S]. The other approach springs
from approximate cell decomposition, filling in a grid-
based world model as more information is gathered,
exemplified by Stentz’ D* algorithm. [9]

Figure 1: Typical terrain encountered on Mars by the
Sojourner rover. The intrepid mobile explorer is 68cm
long by 48cm wide, and stands 28cm tall.

Figure 2: Rangemap of a single image from a stereo
pair. This image also shows obstacles detected within
the visible region, and a path generated by the imple-
mentation of the LIRoverBug” algorithm on Rocky7
(see Section 5)

The above methods have each been developed to
differing degrees in their application to real systems.
For example, the sensor-based version of OPP is cur-
rently strictly theoretical, owing to the difficult-to-
implement nature of the sensors required. The HGVG,
on the other hand, has been implemented on a mobile
robot using range sensors. Choset’s planner produces
paths which are maximally distant from obstacles, a
plus for rover safety. However, it works best in con-
tained environments with well-defined corridors; a de-
scription not applicable to the typical martian envi-
ronment (Fig. 1).

The D* algorithm and Tangent Bug both are useful
in unbounded environments. In addition, they both
produce “locally optimal” solutions, that is, the re-
sultant paths are the shortest length possible given
the use of solely local information. D* has in particu-
lar been implemented on a real world system (an au-
tonomous HMMWV driven in a slag heap near Pitts-
burgh). However, the grid-based world model requires
a significant amount of memory for storage, and the
algorithm’s completeness depends entirely upon the
precision of its world model, which is detcrmined by
cell granularity.

4 ..

Tangcnt Bug provides the motivation for the work
prcscntftci here. Its world model is streamlined, con-
sisting only of sensed obstacle boundary endpoints.
Thc planner itself consists of two “modes”- motion-
to-goal, and boundary following-which interact in-
crementally to ensure global convergence (if the goal
is reachable), and which “fail gracefully” if the goal
is found to be out of reach. Thus, the algorithm is
memory-efficient, fairly robust, and conserves robot
motion. However, some of its assumptions do not ap-
ply to the “rover problem” of navigating in planetary
terrain. For example, Tangent Bug assumes that the
robot is modelled as a point, and that obstacles block
both motion and sensing. In addition, Tangent Bug
assumes that the robot’s sensor provides an omnidi-
rectional view.

The current scenario for a rover sensing system con-
sists of a stereo pair of cameras mounted on a pan-
able mast. Typically, these cameras have a 30’ to
45” field of view (FOV), and the “visible region” con-
nected with these sensors sweeps out roughly a wedge,
with limited downrange radius R due to both viewing
angle (tilt) and feature resolving ability. (See Fig. 2
for an example of data from such a sensing array.)
(Camera pixels imaging features closer to the horizon
(hence farther away) have a larger footprint than pix-
els imaging the foreground; simultaneously, obstacles
furt,her away are apparently smaller in relative size.
These two properties combine to limit the range at
which a stereo pair can resolve obstacles of a given
height, for instance.) From the discussion in Section
1.1, it is clear that it is important to not simply pan
the sensor array and obtain an omnidirectional view at
every step. Rather, the planner should be able to iden-
tify the minimal number of sensor scans needed-and
which specific areas to scan-to proceed a t each step,
while avoiding unnecessary rover motion. Thus, we
have developed the “Wedgebug” algorithm to address
the shortcomings of Tangent Bug, as a step towards
a more practical path planner for flight microrovers.
Wedgebug is complete, correct, and relies solely upon
the robot’s sensors. The implementation discussed in
Section 5 relaxes the assumption that the rover is a
point robot. Perhaps most importantly, Wedgebug
deals with the limited FOV of flight rovers in a man-
ner which is efficient and minimises the need to sense
and store data, using autonomous gaze control.

Section 3 presents the Wedgebug algorithm in some
detail. Section 4 develops the proof of completeness
for this motion planner. Section 5 describes briefly
the current implementation of an extended Wedgebug
on a prototype microrover a t JPL, with experimental

robot
sensor

aw,
Figure 3: Anatomy of a wedge.

results. Section 6 contains concluding remarks.

3 The Wedgebug Algorithm

The basic assumptions of the Wedgebug algorithm
are as follows: The rover is modelled as a point robot
in a 2D binary environment (i.e., every point in the
environment is either contained within an impassable
obstacle, or lies in freespace). (In Section 5, we discuss
how the implementation deals with the fact that the
real robot is not a point robot.) Obstacles’ boundaries
block sensing as well as motion. The rover’s sensing
array, from position x , detects ranges within a wedge
W (x , q of radius R, which sweeps out an angle 2a
(> 0) and is centered on the direction v’. (All vectors
are assumed to have unit length.) Define C as the
arc boundary of W (x , G) at radius R, and dW(x , i7) as
the union of the two bounding rays of W (x , q (Fig.
3). We further define the “interior” of W (x , q as
int(W(x, v’)) = W(x,G) - d W (x , C) (N.B., an “inte-
rior” point may lie on C) . Let d(a, 13) be the Euclidean
distance between points a and 6.

Wedgebug, like Tangent Bug, is based upon two
modes which interact to ensure global convergence:
motion-to-goal (M t G) and boundary following (B F) .
However, each mode is more finely divided into com-
ponents that improve efficiency and handle the lim-
ited FOV. A high-level sketch of the operation of the
Wedgebug algorithm follows: At the beginning of the
path sequence, an initialisation step records the pa-
rameter dLEAvE = d(A,T) , where A is the robot’s ini-
tial position, and T is the goal. This parameter marks
the largest distance the robot can stray from goal dur-
ing an MtG segment. MtG is typically the dominant
behaviour. I t basically directs the robot to move to-
wards the goal using a local version of the tangent
graph, restricted to the visible region (Fig.4). MtG
works roughly as follows: The robot (at position x)
first senses a wedge, WO = W(x,v’o), where 60 = a
is the vector from x to the goal. (All wedges in the
subsequent discussion are assumed to subsume a half-
angle a.) The tangent graph consists of all line seg-

Figure 4: LTG calculated within W(z,Zo).

ments in freespace connecting the initial position, the
goal, and all obstacle vertices, such that the segments
are tangent to any obstacles they encounter.[4] Let
LTG(S) be the local tangent graph restricted to a set
SI defined as the tangent graph restricted to S. The
planner constructs LTG(W0). If there are no obsta-
cles intersecting the ray x?, the planner adds a node
Tg to LTG(W0) at a distance R from z along z?, so
LTG(W0) contains a path directly towards T. The
planner then searches a subgraph, Gl(W0) = {V E
LTG(Wo)l d(V,T) I min(d(z, T) , dmVE)) , for the OP
timal local subpath. Using the criterion discussed in
Section 3.1, the rover may scan additional wedges as
needed, and constructs the LTG in the conglomerate
wedge, w(z). After executing this subpath,MtG be-
gins anew. This behaviour is continued until either
the goal is reached, or the robot encounters a local
minimum in d(z , T) , which corresponds to a block-
ing obstacle. In the latter case, the planner switches
to B f . The objective of this mode is to skirt the
boundary of the blockang obstacle (the obstacle whose
boundary contains the local minimum), still calculat-
ing LTG(Wo), until one of two events occur: either
the robot completes a loop, in which case the goal
is unreachable and the algorithm halts; or LTG(W0)
contains a new subpath toward the goal. The next
two sections describe the MtG and BF modes in more
detail.

3.1 Motion-to-Goal

During MtG, the robot moves toward a point (fixed
for each step), called the focus point, F (Fig 4). This
point serves as the goal for each MtG step. Its position
within the robot’s FOV also determines whether ad-
ditional wedge views are needed. Initially, F = {V E
Gl(m(z))l d(V,T) 5 d(V’,T),VV’ E G l (F (z)) } .
That is, since LTG(w(z)) reduces in this environment
to simple edges connecting the robot to the sensed ob-
stacle boundary endpoints, F simply marks the direc-
tion for the robot to travel during this step to minimise

its distance to the goal.
If F E int(W(z, &)) , the rover simply executes the

subpath to F , and starts the next MtG step. (N.B., for
purposes of the proof to be given later, the robot never
lies directly on an obstacle boundary do, but rather
remains a distance E away.) We call this case a direct
MtG segment, where the robot moves toward the goal
through freespace. (This is the case illustrated in Fig.

If, on the other hand, F E d W (s , Z o) , the plan-
ner must inspect the tangent to dO at F, &! to see
whether the robot will be “sliding around” the block-
ing obstacle, or if it has possibly encountered a local
minimum in d(., T). If t ‘ ~ . a 5 0, the robot would
need to increase its distance from the goal to skirt the
obstacle on the subsequent step. So, if allowed, the
planner researches Gl(W0) for the next optimal sub-
path, disallowing the rejected position for F , and tests
the new t ’ ~ . (By the triangle inequality, if F E am,
then the new F must lie on the opposing bounding
ray of w.) Changing F is not allowed if (1) F has
already been changed once at x , or (2) the change
would violate the detour condition. This condition
prevents the robot from oscillating between two di-
rections, resulting in an unduly lengthy path, unless
a clear advantage is gained by changing F . The de-
tour condition states that the algorithm must track F,
even as it “slides” around do, and may not switch this
point to a rival point y unless d(y, T) < d(F ,T) and
d(F, T) - d(y, T) > dthresh > 0. If the new TF 5 0
(or F cannot be changed), the robot has encountered a
local minimum in d(.,T). Thus, the planner switches
to BF(described in Section 3.2).

In the case that F E d W (x , a), but T F . ~ > 0, the
robot must “slide around’’ the obstacle while progress-
ing toward T. Unfortunately, being close to an obsta-
cle restricts the robot’s already-limited view and can

4.)

*!Pal *goal

F

robot robot

Figure 5: “Virtual MtG.” The figure on the left de-
picts the first part of an MtG step. The nodes of
LTG(W0) are marked. F satisfies the conditions for
“virtual MtG,” so the robot scans W1 (right). Now,
F E int(W0 U Wl) , so “virtual MtG” ends.

Figure 6: “Virtual B f . ” The figure on the left depicts the first part of a “virtual B f ” step. The nodes of
LTG(W0) are marked with black circles. Since $V E int(LTG(Wo)), the robot scans W1 (center). Again,
$V E int(LTG(W0 u Wl)), so the robot scans W-1 (right). Now, V E int(W0 u W1 u W-l), so “virtual BF” ends.

result in tiny incremental steps. Thus, in order to effi-
ciently acquire data from the robot’s current position
and to avoid as much inefficient motion as possible,
we add a submode of MtG, called “virtual MtG”. The
object of Virtual MtG” is to sense additional wedges
in the direction the robot will “slide around” the ob-
stacle, and to generate a local shortcut in the robot
path.

“Virtual MtG” mode directs the sensing array to
pan towards F (defining this direction of rotation
positive), and to sense the wedge W1 = W(z,Gl),
where L (3 , G k) = 2 k a (that is, WI abuts WO at
F) . Let w = Wo u W1 (in general, a t each position
z, v (z) = Usensed W%(z)). The planner computes
Gl (w) , and finds the new focus point F. Let av+
be the bounding ray r‘ such that L(&?,q > 0 (i.e.,
the edge of in the positive direction). If F E aw+,
“virtual MtG” is repeated. This mode ends if one of
three conditions is met:

F E in t (w) , in which case the robot has found
a suitable shortcut. The robot executes the sub-
path to F , and begins a new MtG iteration.

L (z , d w +) 1 n/2, which means that the rover
is sensing part of a region not useful for MtG,
since G1 contains only nodes closer to T than the
robot’s current position.

t ‘ ~ . i?? 5 0, which indicates that the obstacle
boundary is curving back toward x , that is, the
robot can no longer “virtually slide” in this direc-
tion without losing ground.

In fact, (2) ==-=+ (3). In these cases, if allowed,
the robot changes F as discussed above, and attempts
“virtual MtG” again. If the second attempt fails, the
robot has encountered a local minimum in d(., T) , and
the planner switches to BF.

3.2 Boundary Following

The basic idea of BF is to skirt the blochng obsta-
cle until progress can be made once more toward the
goal. As with M t G , BF is split into two submodes.
“Normal BF” uses two wedge views, one toward the
goal and one in the direction of travel around the ob-
stacle boundary, to determine whether a clear path to-
wards the goal exists while the robot circumnavigates
the obstacle. Immediately after a switch from MtG to
BF, however, the robot must determine its direction
of travel around doh, the blocking obstacle. “Virtual
Bf” is used to take full advantage of the information
which can be gleaned at the current distance from the
obstacle (arguably more than from a closer range), to
choose this direction efficiently. (The primary motiva-
tion for “virtual B f ” is the idea that it is less costly
for the robot to swivel its sensors than for the robot
to actually move.) In essence, the robot will swing its
sensor array back and forth in a prescribed manner, to
search for the “best” place to move and begin “normal
B f ” .

More precisely, the robot initially scans the wedge
W1 = W(z,Gl), where in this case the positive direc-
tion is chosen by comparing the tangents to dOb at
the intersection with aW0; that is, if are the two
tangents (at el and e,, respectively), if 6 .Go 2 fr . GO,
then L(G,-,,zT) > 0. As before, let s;i7 = WO U W1.
The planner computes LTG(w) If 3 a node V E
LTG(m) such that V E int(w), the robot moves to V
and begins “normal BF”, first recording two features:
dTeach, the closest point to T encountered so far on
doh, and ~ / i ~ ~ ~ = 8’V- n doh. If there is no such
node V , the planner directs the sensing array to scan
w - ~ = ~ (x , v ’ _ l) , constructs TV = w0 u W1 u W-1,
and searches the freshly expanded LTG(m). In this
manner, the robot scans back and forth until a suit-
able node is found, then travels there to begin “normal
BF.”

“Virtual BF” ends when one of three cvent,s are
clt:tected:

1. 3” E LTG(m) ndob such that V E int(m). The
robot moves to V , and begins normal BF.

2. The latest scanned wedge overlaps a previously
scanned region (Le., I L (f l ~ , & ~ ~) l > x) . In this
case, the robot is trapped by an encircling obsta-
cle, and the algorithm halts.

3. 3V E LTG(m) with V E int(m), but V 41
dOb sensed. In this case, we call v a “fram-
ing point,” since it “frames” the sensed extent
of aOb. The robot scans once more in the op-
posing direction, and then no matter the out-
come, “virtual BF” ends. If a node as in item
1 is found, the robot moves there and begins nor-
mal BF. Otherwise, the rover moves to the point
on dOb just before the “framing node” (if there
are two, I4 and V,, the rover moves to I4 iff
JL(G0,xX)I > IL(Go,x?)I). At this point, the
rover begins normal BF.

In normal BF, at the start of each step, the robot
senses WO, and searches Gl(W0). BF exits here if:
(1) T E WO, in which case the robot moves to T
and the algorithm is done, or (2) 3’ E Gl(W0) such
that d(V, T) < dreach, the leaving condition, in which
case the planner resets dLEAvE to d(V,T), and be-
gins a new M t G segment. If neither of these con-
ditions hold, the planner computes & , the tangent
to dob at x, and directs the sensing array to scan
W(x,Fz). If Koop E W(x,Fz) , and KoOp E the con-
nected portion of do6 containing x , the robot has ex-
ecuted a loop-therefore, the goal is unreachable, and
the algorithm halts. Otherwise, the planner computes
V E dObnLTG(W(x, cz1) such that d(x, V) > d(z, V’)
VV’ E dObnLTG(W(x, t z)) . The robot records dreach,
executes this subpath, then begins a new BF step.

The Wedgebug algorithm thus deals with the lim-
ited FOV of the robot in an efficient manner. The
“virtual” submodes both take advantage of the lower
cost of panning the sensor array over actual motion,
while minimising the number of views required at each
step.

4 Sketch of Proof of Convergence

The proof of convergence of the Wedgebug algo-
rithm is analagous to the Tangent Bug convergence
proof.[3] The sketch of the proof is as follows: Each
robot motion can be characterised as a particular type

of’ motion segment,. In turn, each type pf segment
can be shown to have finite length. Following Kamon,
Rivlin, and Rimon, it can be shown that there are a
finite number of each type of segment, and thus the
path terminates after finite length. Due to space lim-
itations, we will detail here only the proof that BF
segments have finite length. The proofs for the other
types of motion segments are analagous.

Define the points S, to be the points where the plan-
ner switches from M t G to BF; Ma the local minimum
point associated with S, (Le. the point STndO,) ; La
the point where BF leaving condition is met on obsta-
cle i (switch point from BF to MtG); and finally P,,
marker to detect loop on obstacle i , in BF(Pa = K o O p) .
Then, there are two types of BF segments: [Sa, La],
and [Si, Pi].

Lemma. BF segments are finite length.

Proof. Two cases: a) [Si, Li]. In the usual case,
this segment can be considered a shortcut, com-
pared to the path which would be taken by a robot
with contact sensors executing the Tangent Bug al-
gorithm. The “contact sensor equivalent” path con-
sists of two pieces: [St, Mi], and [Mi, La , where Mi
is the local minimum (along the line Si b) associ-
ated with Si. Let N designate the point where
the robot actually touches dOi during this BF seg-
ment. By the triangle inequality, meas([&, Li]) =
d(Si, N)+meas([N, Li]) I d(Si, Mi)+mea([Mi, N])+
meas([N, Li]). We have that d(Si, Mi) 5 d(Sa,T) 5
d(dLEAV,,T) (using the appropriate value for dLEAVE)
5 d(A,T) < 00 (by assumption). Also, since - M,, N ,
and Li all lie on aOi, and the segments MaN and
NLi do not overlap; and since the obstacle perime-
ter, meas(dOi), is finite, we have meas([Mi,N]) +
meas([N, L,]) = meas([M,,Li]) I meas(d0i) <
00. Thus, this segment is (crudely) bounded
by meas([Si, L,]) I d(S,,Mi) + meas([Mi, N]) +
meas([N,Li]) L d(Si, Mi) + meas([W, L,]) I
d(Si lT) + meas(a0i) 5 d(dLeAvE,T) + meas(d0i) <
00. (Of course, we also have that d(S,, N) i R, where
R is the sensing range, and R < 00 by definition.)

b) [&,Pi]. Similarly, meas([S,,Pi]) 5 d(S,,M,) +
meas(d0i) < 00. 0

-

5 Implementation and Results

An extended version of the Wedgebug algorithm,
called “RoverBug,” has been implemented on the
JPL Rocky7 prototype microrover (Fig 7), a re-
search vehicle designed to test technologies for future

Figure 7: The Rocky7 Prototype Microrover, devel-
oped at JPL to test technologies for future missions.
It is pictured here in the JPL MarsYard, an outdoor
testing arena featuring simulated martian terrain.

missions.[lO] The vehicle is roughly the same size as
the Sojourner rover, with a few important differences
which will come into play in future rovers. (Refer
to [5], [lo] for a fuller description.) Like Sojourner,
Rocky7’s mobility system is a rocker-bogie suspension,
capable of surmounting obstacles 1i wheel diameters
tall. However, Rocky7 boasts three stereo pairs of
cameras for navigation (two body mounted, and one
on a deployable 1.2m mast) as opposed to Sojourner’s
body-mounted laser striping system. In addition, the
rover software features a recently-developed localisa-
tion algorithm utilising mast imagery to aid in dead-
reckoning.[8]

Although the Wedgebug algorithm is an important
step, it still does not quite capture the complexities of
the real world. For instance, the rover is not a point
robot; a problem addressed in the “RoverBug” imple-
mentation by calculating the obstacles’ “silhouettes”:
the smallest polygon bounding the projection of each
SE(2) obstacle onto 8’. Another issue is the fact that
the mast imagery can “see over” many obstacles: the
resulting visibility polygon is not a star-shaped set,
and the LTG is much richer than in the development
in Section 3. Also, the mast is limited in its ability
to sense obstacles within l m of the rover, since the
obstacle detection algorithm searches for steps in ele-
vation, not easy to detect while looking straight down
on the tops of rocks. Thus, care must be taken while
executing the subpaths.

In brief, the scenario is as follows: The rover is

situated in unknown, rough terrain. The remote hu-
man operator designates a goal, which sets in motion
the autonomous planner. The planner begins by di-
recting the mast to image towards the goal. Software
on-board produces a rangemap, detects obstacles, and
computes the obstacles’ convex hulls. The planner,
which uses a version of the theory described above,
then computes the obstacles’ silhouettes, and searches
the resulting LTG to produce the first subpath. The
planner directs the mast to look in the appropriate di-
rection(s), and incrementally builds and executes each
subpath until the goal is reached.

The implementation so far has been tested exten-
sively in the JPL MarsYard, as well as in natural ar-
royo terrain. Fig. 8 shows the results of one typical
run in the MarsYard. The goal was approximately
21m distant from the initial position, and R for each
wedge was 5m. As in Fig. 2, the convex hulls and sil-
houettes are computed within each wedge view, and a
subpath generated, which is executed before the next
wedge view is taken. The resultant multi-step path
runs from lower right to upper left.

6 Summary and Conclusions

The requirements for autonomous flight rovers for
planetary exploration provide compelling motivation
to work in streamlined sensor-based motion planning.
This paper continues the work begun in [5] to develop,
implement, and test a robust, practical path planner
for the Rocky7 prototype microrover. The Wedgebug
algorithm is described, along with its proof of conver-
gence. A companion paper will describe in more detail
the “RoverBug” planner, the Wedgebug extension im-
plemented on Rocky7. These planners significantly
augment microrovers’ autonomous navigation ability,
which in turn will aid in producing successful mobile
robot missions.

Acknowledgments

The work described here was carried out at the Jet
Propulsion Laboratory, California Institute of Tech-
nology, under a contract with the National Aeronau-
tics and Space Administration. We would like to ac-
knowledge the Long Range Science Rover team and
the Mars Pathfinder Microrover Flight Experiment
team, for help, inspiration, and flight experience with
a rover. The authors would particularly like to thank
Samad Hayati, Andrew Mishkin, Clark Olson, Rich
Petras, and Todd Litwin for their invaluable assis-
tance.

Figure 8: Results from a multi-step run in the JPL MarsYard. The path begins in the lower right corner of the
image? toward a goal approx. 21m distant in the upper left. Each wedge depicts a rangemap produced from mast
imagery, and extends roughly 5m from the imaging position. The obstacles are marked by a black convex hull,
and a grey silhouette. Each subpath ends with an apparent ‘Ljag” in the path; these are not in fact motions, but
rather the result of the localisation procedure run at the conclusion of each step. The second line echoing the
path is the rover’s telemetry for the run.

References [6] A. Mishkin, J. Morrison, T. Nguyen, H. Stone, and

E. Rimon and J. Canny, “Construction of C-space
Roadmaps From Local Sensory Data: What Should
the Sensors Look For?” in Proc. IEEE Conf. Robotics
Automat., 1994.
H. Choset, Sensor Based Motion Planning: The Hi-
erarchical Generalized Voronoi Graph. Ph.D. thesis,
California Inst. of Tech., 1996.
I. Kamon, E. Rivlin, and E. Rimon, “A New Range-
Sensor-Based Globally Convergent Navigation Algo-
rithm for Mobile Robots,” CIS-Center of Intelligent
Systems 9517, Computer Science Dept., Technion, Is-
rael, 1995.
J.-C. Latombe, Robot Motion Planning. Kluwer Aca-
demic Publishers, 1991.

S. L. Laubach, “An Autonomous Path-Planner Im-
plemented on the Rocky7 Prototype Microrover,” in
Proc. IEEE Conf. Robotics Automat., 1998.

B. Cooper, “Operations and Autonomy of the Mars
Pathfinder Microrover,” in Proc. IEEE Aerospace
Conf., 1998.

[7] MGS Investigation Description and Science Require-
ment Document, JPL Document D-12487, February
1995.

[8] C. Olson and L. Matthies, ”Maximum Likelihood
Rover Localisation by Matching Range Maps,” in
Proc. IEEE Conf. Robotics Automat., 1998.

191 A. Stentz, “Optimal and Efficient Path Planning
for Partially-Known Environments,” in Proc. IEEE
Conf. Robotics Automat., 1994.

[lo] R. Volpe, J . Balaram, T. Ohm, and R. Ivlev, “The
Rocky7 Mars Rover Prototype,” in Proc. IEEE/RSJ
Conf. Intelligent Robots and Sys., 1996.

